3D Printed Device for Tumor Cell Diagnostics (#7346)

This technology is a portable, disposable, 3D-printed microfluidic platform that can isolate viable circulating tumor cells (CTCs) from blood samples

Inventors at Georgia Tech have developed a portable, disposable, 3D-printed microfluidic platform that can isolate viable circulating tumor cells (CTCs) from blood samples. This technology is capable of identifying new biomarkers as diagnostic and therapeutic targets. The platform will enable routine, reliable extraction of CTCs from patient blood samples and has the potential to transform clinical management of cancer and basic and clinical research.

Benefits/Advantages

- Minimally invasive – potentially eliminates the need for invasive serial biopsies
- Cheaper – simple manufacturing process
- Disposable - size and materials allow for easy disposal
- Versatile - has multiple applications

Potential Commercial Applications

- Cancer biomarker diagnostics and analysis
- Circulating rare cell identification for predicting disease risk

Background/Context for This Invention

Cancer spreads through the body as migratory circulating tumor cells (CTCs). The isolation and analysis of rare CTCs hold great promise for providing insight into blood-borne metastasis, as well as monitoring cancer response noninvasively following therapeutic interventions. There exists a need for a device capable of capturing tumor cells in circulation.

Dr. Ali Fatih Sarioglu
Assistant Professor – Georgia Tech School of Electrical and Computer Engineering

Chia-Heng Chu
Graduate Student - Georgia Tech

Ruxiu Liu
Graduate Student - Georgia Tech
For more information about this technology, please visit:
https://industry.gatech.edu/technology/3d-printed-device-tumor-cell-diagnostics