Molecularly Mixed Composite Membranes (#7819)

Homogenously mixed matrix membranes beneficial to molecular separation processes

Georgia Tech Inventors from the School of Chemical Engineering synthesized amorphous scrambled porous organic cages (ASPOCs) from organic linker mixtures. The cages are amorphous due to different functionalities on their vertices. Their solubility in organic solvents allow for homogenous, molecular-level mixing with polymer matrices. Due to this critical property, ASPOCs simplifies the preparation of and processing of mixed matrix membrane casting and can be used in industrial molecular separation processes such as.

Benefits/Advantages

- **Simplifies preparation** - membrane casting solution and processes made easier using organic cages
- **Reduce defect formation** - interactions between filler and polymer matrices are dramatically improved compared to traditional filler materials (e.g., zeolites, metal-organic frameworks), contributing to less defects in membrane formation

Potential Commercial Applications

- Nanofiltration of alcohol solutions
- Desalination
- Pharmaceutical purification

Background/Context for This Invention

Porous organic cages (POCs) are individual molecules that are permeable and soluble in common solvents. The organic cages are first synthesized then separately and assembled into a solid state to allow for solution-processing tunability. Conventional membranes composed of crystalline or particulate fillers suffer from agglomeration and poor dispersion throughout the suspension. These POC membranes are soluble and have the advantage of integrating well within the membranes and matrix polymers.

Dr. Ryan Lively
Assistant Professor – Georgia Tech School of Chemical and Biomolecular Engineering

Guanghui Zhu
PhD Candidate – Georgia Tech School of Chemical and Biomolecular Engineering
For more information about this technology, please visit:
https://industry.gatech.edu/technology/molecularly-mixed-composite-membranes